Withdraw
Loading…
Three-dimensional field-effect transistors with top-down and bottom-up nanowire-array channels
Chabak, Kelson D
Loading…
Permalink
https://hdl.handle.net/2142/95466
Description
- Title
- Three-dimensional field-effect transistors with top-down and bottom-up nanowire-array channels
- Author(s)
- Chabak, Kelson D
- Issue Date
- 2016-11-09
- Director of Research (if dissertation) or Advisor (if thesis)
- Li, Xiuling
- Doctoral Committee Chair(s)
- Li, Xiuling
- Committee Member(s)
- Rogers, John A.
- Dallesasse, John
- Feng, Milton
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- nanowire transistor
- High-electron-mobility transistor (HEMT)
- Fin field effect transistor (finFET)
- vapor-liquid-solid
- gallium oxide
- Metal–oxide–semiconductor field-effect transistor (MOSFET)
- wrap-gate
- Abstract
- This dissertation research effort explores new transistor topologies using three-dimensional nanowire (NW)-array channels formed by both bottom-up and top-down synthesis. The bottom-up NW research centers on the Au-catalyzed planar GaAs NW assembly discovered at the University of Illinois Urbana-Champaign (UIUC). The top-down NW research approach involves plasma etching of an emerging wide-bandgap material, Gallium Oxide (Ga2O3), to make arrays of NW channels (or fins) for high-power electronics. Bottom-up AlGaAs/GaAs heterostructure core-shell planar NWs are demonstrated on a wafer scale with excellent yield. Their placement is determined by lithographically patterning an array of Au seeds on semi-insulating GaAs substrate. The GaAs NWs assemble by lateral epitaxy via a vapor-liquid-solid mechanism and align in parallel arrays as a result of the (100) GaAs crystal plane orientation; then, a thin-film AlGaAs layer conforms to the GaAs NWs to form AlGaAs/GaAs NW high-electron mobility channels. Radio frequency (RF) transistors are fabricated and show excellent dc and high-frequency performance. An fmax > 75 GHz with < 2 V supply voltage and ION/IOFF > 104 is measured which is superior compared to carbon-based nanoelectronics and “spin-on III-V NWs”. A comprehensive small-signal model is used to extract the contributing and limiting factors to the RF performance of AlGaAs/GaAs NW-array transistors and predict future performance. Finally, a process is developed to show that III-V NWs on sacrificial epitaxial templates can be transferred to arbitrary substrates. Top-down NWs were formed from Sn-doped Ga2O3 homoepitaxially grown on semi-insulating beta-phase Ga2O3 substrates by metal-organic vapor phase epitaxy. First, conventional planar transistors were fabricated from a sample set to characterize and understand the electrical performance as a function of Sn-doping and epitaxial channel thickness. Second, the high-critical field strength was evaluated to highlight the benefit of using Ga2O3 as a disruptive technology to GaN and SiC. Lastly, the planar transistor results feed into a design for a top-down NW-array transistor. The Ga2O3 NW-arrays were formed by BCl3 plasma etching. A new wrap-gate transistor demonstrates normally-off (enhancement-mode) operation with a high breakdown voltage exceeding 600 V which is superior to any transistor using a 3D channel.
- Graduation Semester
- 2016-12
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/95466
- Copyright and License Information
- Copyright 2016 Kelson Dean Chabak
Owning Collections
Dissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringGraduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…