Withdraw
Loading…
Subspace estimation for subspace-based magnetic resonance spectroscopic imaging
Clifford, Bryan Alexander
Loading…
Permalink
https://hdl.handle.net/2142/90903
Description
- Title
- Subspace estimation for subspace-based magnetic resonance spectroscopic imaging
- Author(s)
- Clifford, Bryan Alexander
- Issue Date
- 2016-04-15
- Director of Research (if dissertation) or Advisor (if thesis)
- Liang, Zhi-Pei
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- M.S.
- Degree Level
- Thesis
- Keyword(s)
- subspace model
- subspace estimation
- field inhomogeneity
- magnetic resonance
- MRI
- MRSI
- spectroscopy
- spectroscopic imaging
- Abstract
- Magnetic resonance spectroscopic imaging (MRSI) is a powerful technique that offers us the ability to non-invasively image chemical distributions within the human body. However, due to its inherently poor trade-off between imaging speed, resolution, and signal-to-noise ratio (SNR), MRSI has remained impractical for many research and clinical applications. A large body of work has been done to improve this trade-off. Recently new subspace-based imaging methods have also been proposed as a means of dramatically accelerating MRSI. By taking advantage of the properties of a partially separable (PS) signal model, subspace-based methods offer increased flexibility in acquisition as well as image reconstruction, and thereby allow high-resolution, high-SNR MRSI images to be obtained in a fraction of the time required by standard techniques. An important ingredient common to all subspace-based imaging methods is the estimation of the subspace structure of the high-dimensional image function. However, accurate subspace estimation in the presence of noise and inhomogeneity in the main magnetic field is challenging. To this end we propose a novel method for subspace estimation which utilizes a regularized-reconstruction approach to correct for the effects of field inhomogeneity and noise. Carefully designed numerical simulations and experimental studies have been performed to evaluate the performance of the proposed method in a variety of experimental conditions. Results from these data show that the proposed method is able to obtain an accurate subspace estimation, either in terms of a projection error metric or by inspecting the residual after projecting the fully sampled data onto the estimated subspaces. Additionally, in vivo MRSI data was acquired to illustrate that the subspace estimated by the proposed method leads to high-quality spatiospectral reconstructions.
- Graduation Semester
- 2016-05
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/90903
- Copyright and License Information
- Copyright 2016 Bryan A. Clifford
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…