Withdraw
Loading…
Cryptographic agents
Agrawal, Shashank
Loading…
Permalink
https://hdl.handle.net/2142/89129
Description
- Title
- Cryptographic agents
- Author(s)
- Agrawal, Shashank
- Issue Date
- 2015-12-01
- Director of Research (if dissertation) or Advisor (if thesis)
- Prabhakaran, Manoj
- Doctoral Committee Chair(s)
- Prabhakaran, Manoj
- Committee Member(s)
- Gunter, Carl
- Borisov, Nikita
- Vaidya, Nitin
- Vaikuntanathan, Vinod
- Department of Study
- Computer Science
- Discipline
- Computer Science
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- cryptography
- security framework
- functional encryption
- obfuscation
- Abstract
- Over the last decade or so, thanks to remarkable breakthroughs in cryptographic techniques, a wave of ''cryptographic objects'' -- identity-based encryption, fully-homomorphic encryption, functional encryption, and most recently, various forms of obfuscation -- have opened up exciting new possibilities for computing on encrypted data. Initial foundational results on this front consisted of strong impossibility results. Breakthrough constructions, as they emerged, often used specialized security definitions which avoided such impossibility results. However, as these objects and their constructions have become numerous and complex, often building on each other, the connections among these disparate cryptographic objects, and among their various security definitions, have become increasingly confusing. The goal of this work is to provide a clean and unifying framework for diverse cryptographic objects and their various security definitions, equipped with powerful 'reduction' and 'composition' theorems. We model the functionality desired from a cryptographic object via a 'schema' in an ideal world. Our new security definition, indistinguishability preservation, is parametrized by a family of 'test' functions. We say that a scheme securely implements a schema against a test family in the real world if for every test in the family, if test is able to hide some bit of information from all adversaries in the ideal world, then this bit should be hidden in the real world too. By choosing test families appropriately, we are able to place known security definitions (along with new ones) for a given object on the same canvas, enabling comparative analysis. Next, we explore the implications of a meaningful relaxation of our security definition, the one obtained by considering all-powerful adversaries in the ideal world. Thanks to our framework, we are not only able to substantially generalize known results connecting two important flavors of security definitions (simulation and indistinguishability) in cryptography under this relaxation, but significantly simplify them too. We also initiate a systematic study of the security of fundamental cryptographic primitives like public-key encryption under a new class of attacks that had not been considered so far in the literature. Once again, owing to the flexibility of our framework, we are able to model such attacks, along with existing ones, in a clean and satisfactory way.
- Graduation Semester
- 2015-12
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/89129
- Copyright and License Information
- Copyright 2015 Shashank Agrawal
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Computer Science
Dissertations and Theses from the Dept. of Computer ScienceManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…