Withdraw
Loading…
Universal outlier hypothesis testing with applications to anomaly detection
Li, Yun
Loading…
Permalink
https://hdl.handle.net/2142/88955
Description
- Title
- Universal outlier hypothesis testing with applications to anomaly detection
- Author(s)
- Li, Yun
- Issue Date
- 2015-10-07
- Director of Research (if dissertation) or Advisor (if thesis)
- Veeravalli, Venugopal
- Doctoral Committee Chair(s)
- Veeravalli, Venugopal
- Committee Member(s)
- Moulin, Pierre
- Mehta, Prashant
- Varshney, Lav
- Department of Study
- Electrical & Computer Engineering
- Discipline
- Electrical & Computer Engineering
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- universal outlier hypothesis testing
- anomaly detection
- generalized likelihood test
- multihypothesis sequential probability ratio test
- cluster analysis
- Abstract
- Outlier hypothesis testing is studied in a universal setting. Multiple sequences of observations are collected, a small subset (possibly empty) of which are outliers. A sequence is considered an outlier if the observations in that sequence are distributed according to an “outlier” distribution, distinct from the “typical” distribution governing the observations in the majority of the sequences. The outlier and typical distributions are not fully known, and they can be arbitrarily close. The goal is to design a universal test to best discern the outlier sequence(s). Both fixed sample size and sequential settings are considered in this dissertation. In the fixed sample size setting, for models with exactly one outlier, the generalized likelihood test is shown to be universally exponentially consistent. A single letter characterization of the error exponent achieved by such a test is derived, and it is shown that the test achieves the optimal error exponent asymptotically as the number of sequences goes to infinity. When the null hypothesis with no outlier is included, a modification of the generalized likelihood test is shown to achieve the same error exponent under each non-null hypothesis, and also consistency under the null hypothesis. Then, models with multiple outliers are considered. When the outliers can be distinctly distributed, in order to achieve exponential consistency, it is shown that it is essential that the number of outliers be known at the outset. For the setting with a known number of distinctly distributed outliers, the generalized likelihood test is shown to be universally exponentially consistent. The limiting error exponent achieved by such a test is characterized, and the test is shown to be asymptotically exponentially consistent. For the setting with an unknown number of identically distributed outliers, a modification of the generalized likelihood test is shown to achieve a positive error exponent under each non-null hypothesis, and consistency under the null hypothesis. In the sequential setting, a test with the flavor of the repeated significance test is proposed. The test is shown to be universally consistent, and universally exponentially consistent under non-null hypotheses. In addition, with the typical distribution being known, the test is shown to be asymptotically optimal universally when the number of outliers is the largest possible. In all cases, the asymptotic performance of the proposed test when none of the underlying distributions is known is shown to converge to that when only the typical distribution is known as the number of sequences goes to infinity. For models with continuous alphabets, a test with the same structure as the generalized likelihood test is proposed, and it is shown to be universally consistent. It is also demonstrated that there is a close connection between universal outlier hypothesis testing and cluster analysis. The performance of various proposed tests is evaluated against a synthetic data set, and contrasted with that of two popular clustering methods. Applied to a real data set for spam detection, the sequential test is shown to outperform the fixed sample size test when the lengths of the sequences exceed a certain value. In addition, the performance of the proposed tests is shown to be superior to that of another kernel-based test for large sample sizes.
- Graduation Semester
- 2015-12
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/88955
- Copyright and License Information
- Copyright 2015 Yun Li
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…