Withdraw
Loading…
Maintaining privacy during continuous motion sensing
Juen, Joshua Paul Joseph
Loading…
Permalink
https://hdl.handle.net/2142/88934
Description
- Title
- Maintaining privacy during continuous motion sensing
- Author(s)
- Juen, Joshua Paul Joseph
- Issue Date
- 2015-08-18
- Director of Research (if dissertation) or Advisor (if thesis)
- Borisov, Nikita
- Doctoral Committee Chair(s)
- Borisov, Nikita
- Committee Member(s)
- Schatz, Bruce
- Caesar, Matthew
- Choudhury, Romit
- Department of Study
- Electrical & Computer Engineering
- Discipline
- Electrical & Computer Engineering
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Computer Security
- Privacy
- Machine Learning
- Big Data
- Phone Sensors
- Smartphones
- Differential Privacy
- Abstract
- Mobile devices contain sensors which allow continuous recording of a user's motion allowing the development of activity, fitness and health applications. With varied applications, the motion sensors present new privacy problems which require protection. This dissertation builds on previous work with activity and fitness machine learning techniques demonstrating the ability to predict medical values from motion data using smartphones. We conduct two clinical trials collecting a data set of eighty-eight patients and forty-five hours of monitoring to analyze the privacy implications of releasing motion data. We extract a comprehensive set of statistical features from all available smartphone sensors and evaluate feature selection techniques and machine learning models. We find we can predict user identity, phone identity, speed, FEV1/FVC, and activity from the motion signal. Designing a privacy protection mechanism for motion data requires a precise understanding of how the signal predicts the sensitive information. We develop algorithms to conduct private feature selection which identifies features useful for prediction. We find that simply blocking all private features significantly reduces the usefulness of the signal for other predictions. We develop a sensitivity estimation framework to calibrate the noise for each private feature requiring an order of magnitude less noise than differential privacy sensitivity. We find adding noise to private features calibrated using the sensitivity estimate is effective at reducing the prediction of five tested target predictions. Our methods hide both user and phone identification while allowing other prediction but cannot hide activity, FEV1/FVC and speed without significantly lowering the accuracy of other predictions. Our methods are still effective when the attacker has prior knowledge of the noise distribution. The methods presented in this dissertation demonstrate the need for privacy in motion data and provide a framework for protecting sensitive user information in motion readings.
- Graduation Semester
- 2015-12
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/88934
- Copyright and License Information
- 2015 Joshua Paul-Joseph Juen
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…