Withdraw
Loading…
Design of reliable and energy-efficient high-speed interface circuits
Keel, Min-Sun
Loading…
Permalink
https://hdl.handle.net/2142/88932
Description
- Title
- Design of reliable and energy-efficient high-speed interface circuits
- Author(s)
- Keel, Min-Sun
- Issue Date
- 2015-08-10
- Director of Research (if dissertation) or Advisor (if thesis)
- Rosenbaum, Elyse
- Doctoral Committee Chair(s)
- Rosenbaum, Elyse
- Committee Member(s)
- Hanumolu, Pavan Kumar
- Schutt-Aine, Jose E.
- Shanbhag, Naresh R.
- Department of Study
- Electrical & Computer Engineering
- Discipline
- Electrical & Computer Engineering
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Electrostatic discharge (ESD)
- Charged device model (CDM)
- High-speed I/O
- wireline communication
- transmitter
- receiver
- ADC-based receiver
- Stub Series Terminated Logic (SSTL)
- Abstract
- The data-rate demand in high-speed interface circuits increases exponentially every year. High-speed I/Os are better implemented in advanced process technologies for lower-power systems, with the advantages of improved driving capability of the transistors and reduced parasitic capacitance. However, advanced technologies are not necessarily advantageous in terms of device reliability; in particular device failure from electrostatic discharge (ESD) becomes more likely in nano-scale process nodes. In order to secure ESD resiliency, the size of ESD devices on I/O pads should be sufficiently large, which may potentially reduce I/O speed. These two conflicting requirements in high-speed I/O design sometimes require sacrifice to one of the two properties. In this dissertation, three different approaches are proposed to achieve reliable and energy-efficient interface circuits. As the first approach, a novel ESD self-protection scheme to utilize “adaptive active bias conditioning” is proposed to reduce voltage stress on the vulnerable transistors, thereby reducing the burden on ESD protection devices. The second approach is to cancel out effective parasitic capacitance from ESD devices by the T-coil network. Voltage overshoot generated by magnetic coupling of the T-coil network can be suppressed by the proposed “inductance halving” technique, which reduces mutual inductance during ESD. The last approach employs system-level knowledge in the design of an ADC-based receiver for high intersymbol interference (ISI) channels. As a system-level performance metric, bit-error rate (BER) is adopted to mitigate a bit-resolution requirement in “BER-optimal ADC”, which can lead to 2× power-efficiency in the flash ADC and achieve a better BER performance.
- Graduation Semester
- 2015-12
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/88932
- Copyright and License Information
- Copyright 2015 Min-Sun Keel
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…