The predissociation of chem{N_2} excited levels is enabled by the presence of optically-inaccessible triplet states. We have recorded vacuum ultraviolet (VUV) spectra at the SOLEIL synchrotron which reveal these states through their perturbation of allowed transitions or their direct appearance due to intensity borrowing.
Some of these measurements were recorded at 900,K in order to access high-rotational levels, other measurements investigated weak forbidden transitions at high column density. Following careful analysis, significant new information has been obtained elucidating the states responsible for the astrochemically and atmospherically signficant chem{N_2} predissociation mechanism, and allowing for improvements in its quantitiative modelling.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.