This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/88380
Description
Title
Investigation on Double Negative Metamaterials
Author(s)
To, Oscar
Contributor(s)
Kim, Kevin
Issue Date
2014-12
Keyword(s)
metamaterial
nanospheres
FDTA
DGTD
double negative metamaterial
Abstract
Metamaterials, materials that exhibit electromagnetic properties that are not naturally achievable, are currently a hot topic in research. Of the domain of metamaterials, major research efforts have focused on double negative metamaterials (DNM), materials that demonstrate a negative index of refraction, due to their potential applications such as superlens and cloaking. Moreover, passive metamaterials--materials that do not require additional energy to exhibit exotic properties--have demonstrated qualities beneficial as a DNM. Due to the nature of DNM, the atypical electromagnetic properties can only be seen over a finite range of frequencies. Current experimental realizations of DNM have been demonstrated in infrared wavelengths and radio frequency to millimeter waves; there have been no DNMs experimentally validated over the visual frequency spectrum. In this thesis, we propose a design of a DNM that displays negative refraction at the visual spectrum and validate the design experimentally. The design utilizes a layer of close-packed, precisely size-controlled, uniform nanospheres deposited on a layer of thin metallic film. We model the reflectance and transmittance of the design through the 3D finite-difference time-domain (FDTD) and 3D discontinuous Galerkin time-domain (DGTD) method. The theory behind our design and the results of the simulations and experiments will be discussed here.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.