Characterization of Leucyl -Trna Synthetase From Homo Sapiens and Escherichia Coli in Aminoacylation, Amino Acid Editing and Interdomain Interactions
Pang, Yan Ling Joy
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87898
Description
Title
Characterization of Leucyl -Trna Synthetase From Homo Sapiens and Escherichia Coli in Aminoacylation, Amino Acid Editing and Interdomain Interactions
Author(s)
Pang, Yan Ling Joy
Issue Date
2010
Doctoral Committee Chair(s)
Martinis, Susan A.
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Chemistry, Biochemistry
Language
eng
Abstract
"Human cytoplasmic LeuRS (hscLeuRS) is typically found in a macromolecular complex containing at least eight other proteins. In order to study this enzyme, hscLeuRS was expressed independent of the complex in Escherichia coli. Enzymatic characterization of the isolated hscLeuRS suggested that it attaches a second leucine to Leu-tRNALeu. Liquid chromatography and mass spectrometry methods were used in an attempt to isolate this hypothesized ""doubly charged"" tRNA species and it is possible that hscLeuRS possesses a secondary function beyond aminoacylation reliant on a doubly charged Leu-Leu-tRNALeu. Further biochemical analysis of the hscLeuRS focused on its editing pocket. The editing site of hscLeuRS includes a highly conserved threonine discriminator and universally conserved aspartic acid that were mutationally characterized. Substitution of threonine to alanine uncoupled specificity similar to other LeuRSs. However, the introduction of bulky residues in the amino acid binding pocket failed to block deacylation of tRNA, indicating that the architecture of the amino acid binding pocket is different compared to other characterized LeuRSs. In addition, mutation of the universally conserved aspartic acid abolished tRNALeu deacylation. Surprisingly though, this editing-defective hscLeuRS maintained fidelity. This indicates that an alternate editing mechanism may have been activated upon failure of the post-transfer editing active site in order to maintain fidelity during protein synthesis."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.