Effects of Immobilization Matrices and Protein Orientation on Biomolecular Recognition at Solid-Liquid Interfaces
Yeung, Chiuman
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87869
Description
Title
Effects of Immobilization Matrices and Protein Orientation on Biomolecular Recognition at Solid-Liquid Interfaces
Author(s)
Yeung, Chiuman
Issue Date
1998
Doctoral Committee Chair(s)
Leckband, Deborah E.
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Biophysics, General
Language
eng
Abstract
We then investigated the dependence of protein orientation on the forces between immobilized proteins and soluble ligands. Oriented cytochrome b5 monolayers were constructed on supported lipid membranes using a site-selective immobilization method. The orientation of the immobilized cytochrome b5 was well controlled as verified with linear dichroism measurements. The orientational dependence of the protein electrostatic surface potentials was observed by direct force measurement. The impact of immobilized cytochrome b5 orientation on the forces mediating the cytochrome b5-cytochrome c recognition was quantified, and correlated with the measured surface binding behaviors. We found good agreement between force measurements, molecular models, and equilibrium binding behavior.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.