Automating Topology Aware Mapping for Supercomputers
Bhatele, Abhinav
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87863
Description
Title
Automating Topology Aware Mapping for Supercomputers
Author(s)
Bhatele, Abhinav
Issue Date
2010
Doctoral Committee Chair(s)
Kale, Laxmikant V.
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Performance improvements through topology aware placement for applications such as NAMD and OpenAtom are used to motivate this work. Building on these ideas, the dissertation proposes algorithms and techniques for automatic mapping of parallel applications to relieve the application developers of this burden. The effect of contention on message latencies is studied in depth to guide the design of mapping algorithms. The hop-bytes metric is proposed for the evaluation of mapping algorithms as a better metric than the previously used maximum dilation metric. The main focus of this dissertation is on developing topology aware mapping algorithms for parallel applications with regular and irregular communication patterns. The automatic mapping framework is a suite of such algorithms with capabilities to choose the best mapping for a problem with a given communication graph. The dissertation also briefly discusses completely distributed mapping techniques which will be imperative for machines of the future.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.