Scanning Tunneling Microscopy and Spectroscopy of Carbon Nanotubes Interfaced With Silicon Surfaces
Albrecht, Peter Michael
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87856
Description
Title
Scanning Tunneling Microscopy and Spectroscopy of Carbon Nanotubes Interfaced With Silicon Surfaces
Author(s)
Albrecht, Peter Michael
Issue Date
2007
Doctoral Committee Chair(s)
Lyding, Joseph W.
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
Single-walled carbon nanotubes (SWNTs) are high-aspect-ratio molecular wires that exhibit either metallic or semiconducting behavior depending upon their diameter and chiral angle. SWNTs support high-mobility electrical conduction, are chemically and mechanically robust, and can both emit and detect infrared light. These properties recommend SWNTs as the building blocks of a future molecular nanotechnology. In the near term, however, the integration of SWNTs with silicon-based complementary metal-oxide-semiconductor (CMOS) technology holds the greatest promise in terms of economic and manufacturing feasibility. In this thesis, the ultrahigh vacuum scanning tunneling microscope (UHV-STM) is used to examine SWNTs directly interfaced with the hydrogen-passivated Si(100) surface. An approach termed dry contact transfer (DCT) was developed for the UHV deposition of SWNTs with minimal disruption of the atomically flat Si(100)-2x1:H surface. Isolated, rather than bundled, SWNTs could be routinely located on the surface for atomically resolved imaging, tunneling current-voltage spectroscopy, lateral manipulation, and cutting with the room-temperature UHV-STM. The removal of hydrogen at the nanotube-silicon interface via UHV-STM electron-stimulated desorption resulted in structural and electronic modifications to the SWNT. The growing body of first-principles simulations of the SWNT/Si(100) system was drawn upon in the interpretation of such local perturbations. Weakly adsorbed SWNTs initially unstable in the presence of the rastered STM tip could be stabilized by depassivating the underlying H-Si(100) surface. Finally, feedback-controlled cutting of SWNTs with the UHV-STM was demonstrated as a precise and reproducible means of preparing one or more finite-sized SWNTs from an extended tube.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.