This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87775
Description
Title
Toward Ideal Large -Eddy Simulation
Author(s)
Langford, Jacob Anthony
Issue Date
2000
Doctoral Committee Chair(s)
Moser, Robert D.
Department of Study
Theoretical and Applied Mechanics
Discipline
Theoretical and Applied Mechanics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Applied Mechanics
Language
eng
Abstract
In the second case, a coarse finite-volume representation defines the LES scales. Optimal flux models are expressed as modifications of standard fourth-order schemes, so that numerical and subgrid effects are treated simultaneously. The LES obeys only a bulk conservation of mass, but it is shown that errors introduced by enforcing a second-order divergence-free condition are small.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.