Residual Stress Development and Effect on the Piezoelectric Performance of Sol -Gel Derived Lead Zirconate Titanate (Pzt) Thin Films
Berfield, Thomas A.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87748
Description
Title
Residual Stress Development and Effect on the Piezoelectric Performance of Sol -Gel Derived Lead Zirconate Titanate (Pzt) Thin Films
Author(s)
Berfield, Thomas A.
Issue Date
2008
Doctoral Committee Chair(s)
Sottos, Nancy R.
Department of Study
Theoretical and Applied Mechanics
Discipline
Theoretical and Applied Mechanics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
Additionally two patterning methods, traditional chemical wet-etching and a novel soft lithographic technique, are explored as a means to reduce residual stress within film features. For the soft lithographic technique, film features are created by selective film cracking, a result of poor substrate adhesion promoted by a mediated, self-assembled monolayer. Wafer curvature stress measurements and DIC-based strain measurements of mediated monolayer patterned features reveal that the in-plane stress/strain development is reduced compared to the blanket film case. Critical in-plane strains at crack initiation are also measured using a new digital image correlation technique, in which fluorescent nanoparticles (c.a. 140 nm) provide the speckle pattern. A corresponding increase in the field induced displacements is observed for the film features with reduced residual stress. Overall, the piezoelectric performance of the films is highly dependent on the residual stress in the films and can be enhanced significantly by a reduction in this stress through film patterning.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.