Contributions to Estimation in Item Response Theory
Trachtenberg, Felicia Lynn
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87423
Description
Title
Contributions to Estimation in Item Response Theory
Author(s)
Trachtenberg, Felicia Lynn
Issue Date
2000
Doctoral Committee Chair(s)
He, Xuming
Department of Study
Statistics
Discipline
Statistics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Statistics
Language
eng
Abstract
In the logistic item response theory models, the number of parameters tends to infinity together with the sample size. Thus, there has been a longstanding question of whether the joint maximum likelihood estimates for these models are consistent. The main contribution of this paper is the study of the asymptotic properties and computation of the joint maximum likelihood estimates, as well as an alternative estimation procedure, one-step estimation. The one-step estimates are much easier to compute, yet are consistent and first-order equivalent to the joint maximum likelihood estimates under certain conditions on the sample sizes if the marginal distribution of the ability parameter is correctly specified. The one-step estimates are also highly robust against modest misspecifications of the ability distribution. We also study the accuracy of variance estimates for the one-step estimates. Finally, we study tests of the goodness of fit for the models. We show that Rao's score test is superior to the existing chi-square tests.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.