Markov Chain Marginal Bootstrap for Generalized Estimating Equations
Li, Di
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87411
Description
Title
Markov Chain Marginal Bootstrap for Generalized Estimating Equations
Author(s)
Li, Di
Issue Date
2007
Doctoral Committee Chair(s)
He, Xuming
Department of Study
Statistics
Discipline
Statistics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Statistics
Language
eng
Abstract
Longitudinal data are characterized by repeated measures over time on each subject. The generalized estimating equations (GEE) approach (Liang and Zeger, 1996) has been widely used for the analysis of longitudinal data. The ordinary GEE approach can be robustified through the use of truncated robust estimating functions. Statistical inference on the robust GEE is often based on the asymptotic normality of the estimators, and the asymptotic variance-covariance of the regression parameter estimates can be obtained from a sandwich formula. However, this asymptotic variance-covariance matrix may depend on unknown error density functions. Direct estimation of this matrix can be difficult and unreliable since it depends quite heavily on the nonparametric density estimation. Resampling methods provide an alternative way for estimating the variance of the regression parameter estimates. In this thesis, we extend the Markov chain marginal bootstrap (MCMB) (He and Hu, 2002) to statistical inference for robust GEE estimators with longitudinal data, allowing the estimating functions to be non-smooth and the responses correlated within subjects. By decomposing the problem into one-dimensions and solving the marginal estimating equations at each step instead of solving a p--dimensional system of equations, the MCMB method renders more control to the problem and offers advantages over traditional bootstrap methods for robust GEE estimators where the estimating equation may not be easy to solve. Empirical investigations show favorable performance of the MCMB method in accuracy and reliability compared with the traditional way of inference by direct estimation of the asymptotic variance-covariance.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.