Microfiltration of Synthetic Metal Working Fluids Using Aluminum Oxide Membranes
Skerlos, Steven John
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/87107
Description
Title
Microfiltration of Synthetic Metal Working Fluids Using Aluminum Oxide Membranes
Author(s)
Skerlos, Steven John
Issue Date
2000
Doctoral Committee Chair(s)
DeVor, Richard E.
Kapoor, Shiv G.
Department of Study
Industrial Engineering
Discipline
Industrial Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Environmental
Language
eng
Abstract
The design of membrane filtration systems is also influenced by the rate of contaminant build-up in the MWF. Microbiological population growth can grow to potentially hazardous levels in extremely short time-scales. Membrane filtration systems designed to control microbial populations must remove microbes from the MWF at a rate faster than population growth. A model is developed to relate microbiological parameters such as growth rate, yield, and substrate consumption to membrane filtration system design parameters. The model is used to determine if microbial growth control is possible for a given metalworking fluid, membrane filtration system, and membrane cleaning schedule.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.