The Injective Envelope as the Space of Extremal Functions
Dong, Zhou
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/86918
Description
Title
The Injective Envelope as the Space of Extremal Functions
Author(s)
Dong, Zhou
Issue Date
2008
Doctoral Committee Chair(s)
Henson, C. Ward
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Language
eng
Abstract
In this thesis, we study the injective envelope of metric spaces by viewing it as the space of extremal functions as defined by Isbell. Extremal functions are also Kate˘tov functions, which satisfy two inequalities derived from the triangle inequality. One of these inequalities, along with a minimality requirement, is used to define the extremal functions. We compare the extremal functions to other classes of functions defined similarly using one of the two inequalities from the definition of Kate˘tov functions. We also consider separability of the space of extremal functions. We give a general method for generating uncountably many extremal functions from one extremal function satisfying certain inequalities on a sequence of ordered pairs. Then we prove non-separability of the space of extremal functions over some metric subspaces of finite dimensional real Banach spaces and some bounded metric spaces by constructing such an extremal function. Lastly, we discuss some connections with Melleray's work on separability of the space of Kate˘tov functions.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.