Axon Guidance Autonomy and Tensional Requirement for Synaptic Function: Is Learning a Forced Response
Siechen, Scott A.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/86305
Description
Title
Axon Guidance Autonomy and Tensional Requirement for Synaptic Function: Is Learning a Forced Response
Author(s)
Siechen, Scott A.
Issue Date
2006
Doctoral Committee Chair(s)
Chiba, Akira
Department of Study
Cell and Developmental Biology
Discipline
Cell and Developmental Biology
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Biology, Cell
Language
eng
Abstract
"Individual neurons extend multiple processes whose growth cones exhibit different responses to their environment. In culture, detached growth cones display guidance autonomy, contain mRNA for cytoskeletal and other axonal components, and are capable of synthesizing protein locally. However, the extent to which growth cone's autonomy contributes to its pathfinding function within the complex in vivo environment is unknown. Here, we show that detached axonal growth cones from identified Drosophila motoneurons maintain balanced filopodial activities as they extend, navigate and target postsynaptic partner cells normally. After detachment, the growth cones continue to synthesize the synaptic vesicle protein Synaptotagmin but, upon contacting targets, fail to concentrate it at the presynaptic site normally. However, if held by a micropipette that resupplies mechanical tension, the growth cones' ability to localize synaptic vesicles is restored. Our results demonstrate functional autonomy of axonal growth cones as they navigate and initiate synaptogenesis, while implicating intercellular tension as a novel ""retrograde"" mechanism to adjust synaptic function."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.