Effects of Implanted Solutes and Heavy -Ion Cascades on the Kinetics of Radiation -Induced Segregation in Binary Alloys
Giacobbe, Michael John, III
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/85945
Description
Title
Effects of Implanted Solutes and Heavy -Ion Cascades on the Kinetics of Radiation -Induced Segregation in Binary Alloys
Author(s)
Giacobbe, Michael John, III
Issue Date
1999
Doctoral Committee Chair(s)
Jaems F. Stubbins
Department of Study
Nuclear Engineering
Discipline
Nuclear Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
Various electron and dual ion irradiations were conducted to investigate the effect of implanted solutes and heavy-ion cascades on the fluxes of freely-migrating defects which drive radiation-induced segregation (RIS) in Ni-9at.%Al and Cu-1at.%Au alloys. To study the effect of solute implantation on RIS, the segregation rate of Al atoms in Ni-9at.%Al following the implantation of Ne, Sc, or Zr was quantified using in-situ measurements of the growth rate of gamma '-Ni3Al precipitate zones produced during 900-keV electron irradiations between 450 and 625°C in a HVEM. It was found that the implantation of 0.06at.%Ne, 0.12at.%Sc, and 0.06at.%Zr resulted in very strong, small, and no RIS suppression in Ni-9at.%Al, respectively. The Ne effect increased with increasing implantation dose at 450°C and with increasing electron irradiation temperature between 550 and 625°C. In-situ Rutherford backscattering (RBS) was used to measure the RIS suppression effect of heavy-ion bombardment, i.e., 300-keV Al+, 800-keV Cu+, and 1.2-MeV Ag+, on 1.5-MeV He+-induced Au transport away from the near-surface region during concurrent He + and heavy-ion irradiation of Cu-1at.%Au at 400°C. Results demonstrated that the suppression of He+-induced RIS in Cu-1at.%Au caused by concurrent heavy-ion irradiation correlated well with the cascade volume produced by Al+, Cu+, or Ag+ per second and was independent of the heavy ion used. Computer simulations of dual beam experiments based on the Johnson-Lam model for RIS kinetics in binary alloys were also performed, and these simulations supported the RBS results.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.