Instability Studies on a Spherical Inertial Electrostatic Confinement
Kim, Hyung Jin
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/85908
Description
Title
Instability Studies on a Spherical Inertial Electrostatic Confinement
Author(s)
Kim, Hyung Jin
Issue Date
2006
Doctoral Committee Chair(s)
Miley, George H.
Department of Study
Nuclear Engineering
Discipline
Nuclear Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Nuclear
Language
eng
Abstract
In order to evaluate the inertial electrostatic confinement concept, it is essential to develop a reliable and flexible instability analysis method for an equilibrium plasma in a potential well. Subsequently stability of this well can be studied. As a part of this study, methods are sought to avoid or suppress any destructive instabilities. Methods to be explored include modification/control of the well profile, control of the electron to ion beam density ratio, control of the angular momentum of the beam, etc. For this purpose, a perturbative (deltaf) particle simulation techniques for a kinetic analysis is applied to simulate completely the dynamic evolution of perturbed Vlasov-Poisson equations and, in addition, to achieve much more accurate simulations of the nonlinear dynamics using less simulation particles compared to conventional particle-in-cell method. This model is used to study the behavior of two-stream-like instabilities related to the trapped spherically converging ions. Results show that steady-state solutions of the self-consistent Vlasov-Poisson equation in which angular momentum of positively charged particle becomes lower correspond to the formation of a deep potential well. Also, it is shown that the growth rates are a decreasing function of angular momentum spread and an increasing function of longitudinal velocity spread.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.