Hydrodynamic Instability of Fluid Flow Through Homogeneous Porous Media
Low, Corwyn Eng Kong
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/85133
Description
Title
Hydrodynamic Instability of Fluid Flow Through Homogeneous Porous Media
Author(s)
Low, Corwyn Eng Kong
Issue Date
2000
Doctoral Committee Chair(s)
Beddini, Robert A.
Department of Study
Aerospace Engineering
Discipline
Aerospace Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Fluid and Plasma
Language
eng
Abstract
To examine mechanisms for the production of large-amplitude, steady disturbances at elevated Reynolds number, the effective porosity of the medium is reconsidered. Experimental results and detailed microscale flow simulations indicate that significant regions of flow separation exist around and downstream of the contact points of the particles in the porous medium. This results in a decrease in the effective porosity of the medium as Reynolds number is increased, insofar as transport of mass and momentum are concerned, and this phenomenon has not been addressed in prior experimental or computational studies. A new porosity-based streamfunction transformation is introduced, similar in aspects to the density-based transformations used in compressible flows. The porosity is then assumed to be a function of flow Reynolds number. The equation for the linearized disturbance streamfunction then depends on the derivative of porosity with respect to pore Reynolds number evaluated at the mean flow conditions. Flow in the porous media system is found to be spatially unstable for relatively small negative values of the porosity derivative, thus providing a new potential mechanism for observed instabilities.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.