This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/85113
Description
Title
Modeling and Simulation of Bubbles and Particles
Author(s)
Dorgan, Andrew James
Issue Date
2009
Doctoral Committee Chair(s)
Loth, Eric
Department of Study
Aerospace Engineering
Discipline
Aerospace Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Mechanical
Language
eng
Abstract
Finally, the new equation of motion was applied to air bubbles and sand particles of several different diameters. Particle-fluid interactions observed through flow-visualization, particle concentration, particle-wall interactions, and Lagrangian statistics were all considered. These results were interpreted and compared to heavy-particle results where appropriate. Particle deposition was found to be well-described by the heavy-particle model of Young & Leeming and root-mean-square relative velocities were found to also agree with previous heavy-particle work. A model for the latter is suggested for heavy-particles and found to work similarly well for low-density particles. Non-tracer behavior was observed for bubbles with small Stokes numbers, a result not expected based on heavy-particle expectations. Local clustering of particles was observed in certain fluid structures which may indicate the importance of modeling particle collisions in future studies.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.