Iced Airfoil Separation Bubble Measurements by Particle Image Velocimetry
Jacobs, Jason J.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/85103
Description
Title
Iced Airfoil Separation Bubble Measurements by Particle Image Velocimetry
Author(s)
Jacobs, Jason J.
Issue Date
2007
Doctoral Committee Chair(s)
Bragg, Michael B.
Department of Study
Aerospace Engineering
Discipline
Aerospace Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Aerospace
Language
eng
Abstract
Previous iced airfoil investigations have demonstrated somewhat reduced aerodynamic penalties resulting from a three-dimensional ice simulation, compared to those of a two-dimensional ice simulation of a representative cross section. Correspondingly, the current measurements revealed accelerated transition of the separated shear layer emanating from a three-dimensional ice simulation and therefore enhanced pressure recovery and reduced mean separation bubble length, each relative to the flowfield of a representative two-dimensional ice simulation. These effects appeared to result from the quasi-steady distribution of discrete, streamwise vortices which aided the turbulent entrainment of fluid from the recirculation region of the three-dimensional ice simulation separation bubble flowfield. These vortices were generated by a streamwise-vortex instability excited by roughness along the three-dimensional ice simulation and produced spanwise-cell structures throughout this flowfield, as well as significant spanwise variation in peak turbulence statistics. However, these variations were strongly correlated to the local degree of flowfield three-dimensionality observed from surface oil-flow visualization, indicating a three-dimensional relieving effect, such that measurements within a quasi-two-dimensional spanwise region were both qualitatively and quantitatively similar to those of the two-dimensional ice simulation separation bubble flowfield.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.