Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/nanofluidic Devices
King, Travis L.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/84345
Description
Title
Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/nanofluidic Devices
Author(s)
King, Travis L.
Issue Date
2009
Doctoral Committee Chair(s)
Bohn, Paul W.
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Chemistry, Analytical
Language
eng
Abstract
The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfludic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to the inherently small volumes, short length scales, small numbers of analyte molecules, and new physical phenomena involved. To this end, robust and reproducible methods were developed to fabricate hybrid microfluidic/nanofluidic systems where single, high aspect ratio polymer nanopores (100 nm < d < 500 nm) provide fluidic connection between vertically separated microfluidic channels. The current-voltage characteristics of these devices were investigated to determine both the internal dimensions of the FIB-milled nanopores used in their fabrication as well as to shed light on fundamental fluidic behavior arising from the coupling of the microfluidic and nanofluidic elements in the integrated system. A custom axially opposed dual confocal fluorescence microscope was constructed to study analyte transport in these hybrid microfluidic/nanofluidic devices. The behavior of analyte molecules ranging from small molecules ( i.e. fluorescein) to macromolecules (i.e. DNA) during electrokinetic transport in these systems was studied using both this confocal fluorescence microscope as well as wide field fluorescence microscopy to elucidate relationships between nanopore surface charge, analyte charge, analyte size, and applied electrical potential. The inherent optical characteristics of the devices were shown to limit the ultimate spatial resolution and sensitivity of the measurement system, but single file transport of fluorescently labeled DNA molecules was observed.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.