Quantitative Multispectral Biosensing and Imaging Using Plasmonic Crystals
Stewart, Matthew E.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/84322
Description
Title
Quantitative Multispectral Biosensing and Imaging Using Plasmonic Crystals
Author(s)
Stewart, Matthew E.
Issue Date
2008
Doctoral Committee Chair(s)
Nuzzo, Ralph G.
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Optics
Language
eng
Abstract
Conventional surface plasmon resonance (SPR) systems use a prism to couple light into a surface plasmon mode at a metal film-dielectric interface. This cumbersome experimental setup is difficult to integrate into a robust, portable, low-cost, and high-resolution imaging-based device for rapid bioanalytical measurements. More recent work with nanostructured metals, such as nanohole arrays in gold films, enable sensing and imaging of surface binding events using simple, normal incident reflection or transmission configurations. These plasmonic structures exhibit multiple resonances that can be leveraged in sensing applications using multispectral analysis protocols. This thesis describes two new types of low-cost plasmonic crystal sensors formed by soft UV nanoimprint lithography that enable quantitative multispectral analysis of surface binding events in spectroscopic and imaging modes. The first plasmonic optic reported is a quasi-3D crystal consisting of a periodic array of nanoscale holes in a thin gold film with a second, physically separate level of isolated gold disks below each nanoscale hole. The second plasmonic optic reported is a full-3D plasmonic crystal that consists of a polymer embossed with a square array of nanowells covered with a conformal thin gold film. These crystals enable quantitative spectroscopy and imaging of surface binding events with submonolayer sensitivities and micrometer spatial resolution, and can be readily integrated into microfluidic channels for the development of compact form factor devices. Full-3D finite difference time domain calculations are used to accurately model the i transmission spectra and the electromagnetic field distributions in and around the metal nanostructures of the crystals, and to provide insight into the physics underlying the complex optical response of these novel plasmonic structures.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.