Mechanoluminescence and Sonoluminescence From Acoustic Cavitation
Eddingsaas, Nathan C.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/84307
Description
Title
Mechanoluminescence and Sonoluminescence From Acoustic Cavitation
Author(s)
Eddingsaas, Nathan C.
Issue Date
2008
Doctoral Committee Chair(s)
Kenneth S. Suslick
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Acoustics
Language
eng
Abstract
The effect of single-bubble sonoluminescence (SBSL) intensity and spectral profile from the addition of low concentrations of organics to sulfuric acid has been investigated. It was found that the addition of small quantities of organics to sulfuric acid greatly reduced the total SBSL intensity. The addition of small quantities of organics resulted in intense carbon-containing molecular emission lines in the SBSL spectrum. The spectral profile of the molecular emission lines was found to be dependent on concentration of the organic and the applied acoustic pressure. At low concentration, the molecular emission bands showed a rotational temperature of ∼280 K with high energy vibrational population, while at higher concentrations and higher acoustic pressure the molecular emission bands indicated thermodynamic equilibrium with rotational and vibrational temperatures of ∼5,800 K. By analyzing the spectral profile of the molecular emission bands it was determined that at very low concentration the emitting molecular species were excited by electron impact of the organic molecules within the interfacial layer of the bubble while at higher concentration and higher acoustic pressure thermal emission dominated.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.