Physical Conditions and Chemical Processes During Single-Bubble Sonoluminescence
Flannigan, David J.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/84246
Description
Title
Physical Conditions and Chemical Processes During Single-Bubble Sonoluminescence
Author(s)
Flannigan, David J.
Issue Date
2006
Doctoral Committee Chair(s)
Kenneth S. Suslick
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Fluid and Plasma
Language
eng
Abstract
In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.