Nanostructured Organic and Inorganic Thin Films With Novel Molecular Recognition Properties
Twardowski, Mariusz Z.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/84110
Description
Title
Nanostructured Organic and Inorganic Thin Films With Novel Molecular Recognition Properties
Author(s)
Twardowski, Mariusz Z.
Issue Date
2003
Doctoral Committee Chair(s)
Nuzzo, Ralph G.
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
"An important theme in surface/interface science is the development of molecular level understandings of interactions at solid-liquid interfaces. The study of molecular recognition at such interfaces is well suited for modeling with self-assembled monolayers of alkanethiols (SAMs). For optimal studies, the SAM must be defect-free. Towards this end, a chemical treatment of the gold substrate was developed, consisting of a sequential treatment in ""piranha"" followed by dilute aqua regia. We found that the SAMs assembled on these treated substrates had exceptional barrier properties as measured by cyclic voltammetry(CV). X-ray diffraction(XRD) indicated that oxidative treatment induces significant bulk recrystallization of the metal. The dynamics suggest that recrystallization results from preferential dissolution of Au and/or impurities present at grain boundaries, leading to unpinning and merger into larger grains. Supported lipid layers were formed via fusion of unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to mixed SAMs containing ferrocene-functionalized hexadecanethiol chains(FcCO 2C16SH). The structures were characterized by several methods, including CV, ellipsometry and surface plasmon resonance(SPR). Studies revealed that the adsorbed DMPC strongly influences the interactions of the tethered ferrocene groups with secondary aqueous molecular redox probes. Permselective properties are seen. We believe that molecular scale defect structures in the adsorbed DMPC layer confer these molecular discrimination properties. Unilamellar vesicles of DMPC and varying quantities of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt)(DMPG) were used to deposit lipid bilayer assemblies on SAMs. The coverages of the layers were measured with SPR and decreased with increasing DMPG. The assembly is reversible and the lipid adlayer removable with ethanol. Effects of the adsorbed lipid layer on the electrochemical interactions of the hybrid lipid/SAM with several redox probes were characterized using CV. At 5%DMPG, the permeabilities of the probes were affected significantly relative to pure DMPC. These effects include a striking observation of an enhanced, ionic-charge-specific molecular discrimination. Taken together, the results suggest that assembly of secondary adsorbate layers of phospholipids provide an interesting method for modifying the electrochemical properties of thiolate SAMs on gold. Such adlayers can exhibit perm-selection towards species in solution. These species therefore do affect the character of structure/property correlations in ways that are complex and potentially useful."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.