Efficient Mixed -Domain Analysis of Electrostatic Microelectromechanical Systems (Mems)
Li, Gang
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/83796
Description
Title
Efficient Mixed -Domain Analysis of Electrostatic Microelectromechanical Systems (Mems)
Author(s)
Li, Gang
Issue Date
2003
Doctoral Committee Chair(s)
Narayan R. Aluru
Department of Study
Mechanical Engineering
Discipline
Mechanical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Language
eng
Abstract
Computational analysis of electrostatic MEMS requires a self-consistent solution of the coupled interior mechanical domain and the exterior electrostatic domain. Conventional methods for coupled domain analysis, such as finite element/boundary element methods (FEM/BEM), require mesh generation, mesh compatibility, re-meshing and interpolation of solution between the domains. Mesh generation can be difficult and time consuming for complex geometries. Furthermore, mesh distortion can occur for micromechanical structures that undergo large deformations. To overcome all these difficulties, we present efficient computational methods for scattered point and meshless analysis of electrostatic microelectromechanical systems (MEMS). Electrostatic MEM devices are governed by coupled mechanical and electrostatic energy domains. A self-consistent analysis of electrostatic MEMS is implemented by combining a finite cloud method (FCM) based interior mechanical analysis with a boundary cloud method (BCM) based exterior electrostatic analysis. Lagrangian descriptions are used for both mechanical and electrostatic analysis. Meshless finite cloud and boundary cloud methods combined with Lagrangian descriptions are flexible, efficient and attractive alternatives compared to conventional FEM/BEM approach for self-consistent electromechanical analysis. The proposed full Lagrangian FCM/BCM approach has been successfully applied in numerical analysis and computer-aided design of several MEMS devices such as microswitches, micro mirror devices, comb drive microactuators and a micocompressor.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.