3-D Modeling of Ductile Tearing Using Finite Elements: Computational Aspects and Techniques
Gullerud, Arne Stewart
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/83487
Description
Title
3-D Modeling of Ductile Tearing Using Finite Elements: Computational Aspects and Techniques
Author(s)
Gullerud, Arne Stewart
Issue Date
1999
Doctoral Committee Chair(s)
Dodds, Robert H., Jr.
Department of Study
Civil Engineering
Discipline
Civil Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Mechanical
Language
eng
Abstract
To provide a computational framework suitable for the solution of these problems, this work also describes the parallel implementation of a nonlinear, implicit finite element code. The implementation employs an explicit message-passing approach using the MPI standard to maintain portability, a domain decomposition of element data to provide parallel execution, and a master-worker organization of the computational processes to enhance future extensibility. A linear preconditioned conjugate gradient (LPCG) solver serves as the core of the solution process. The parallel LPCG solver utilizes an element-by-element (EBE) structure of the computations to permit a dual-level decomposition of the element data: domain decomposition of the mesh provides efficient coarse-grain parallel execution, while decomposition of the domains into blocks of similar elements (same type, constitutive model, etc.) provides fine-grain parallel computation on each processor. A major focus of the LPCG solver is a new implementation of the Hughes-Winget element-by-element (HW) preconditioner. The implementation employs a weighted dependency graph combined with a new coloring algorithm to provide load-balanced scheduling for the preconditioner and overlapped communication/computation. This approach enables efficient parallel application of the HW preconditioner for arbitrary unstructured meshes.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.