Cloud Chemical Heterogeneity and Its Influence on Aqueous sulfur(IV) Oxidation
Rao, Xin
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/83446
Description
Title
Cloud Chemical Heterogeneity and Its Influence on Aqueous sulfur(IV) Oxidation
Author(s)
Rao, Xin
Issue Date
1997
Doctoral Committee Chair(s)
J. Collett
S. Larson
Department of Study
Civil Engineering
Discipline
Civil Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Atmospheric Science
Language
eng
Abstract
Differences in chemical composition among cloud and fog drops of diverse sizes were investigated at several locations across the United States. Chemical species including acidity, total sulfur (IV), hydrogen peroxide, formaldehyde, hydroxymethanesulfonate (HMS) and trace metals iron and manganese were measured. Samples were collected with three cloud samplers capable of partitioning the cloud drop size spectrum into two or three independent drop size fractions. Measurements of pH variations within natural cloud drop populations reveal that small drops are often more acidic than large drops. No obvious pattern of drop size-dependence of hydrogen peroxide concentrations was observed. Trace metal concentrations were found to vary with drop size in clouds and fogs sampled at a variety of U.S. locations. Iron speciation measurements in San Joaquin Valley fogs revealed that dissolved iron in small fog drops was present almost entirely as Fe(III). The observed size dependence of hydrogen ion and trace metal concentrations in cloud and fog drops is expected to influence in-cloud S(IV) oxidation rates. Effects of chemical heterogeneity on overall in-cloud S(IV) oxidation rates will largely depend on contributions of the different oxidation paths. About 84 percent of the samples are calculated to experience little enhancement in S(IV) oxidation, due to the dominance of the H$\sb2$O$\sb2$ path. Approximately 9 percent of the samples are calculated to experience oxidation rate enhancement between 10 and 30%, while 7 percent of the samples are calculated to experience oxidation rate enhancement of 30% or more. Effects of chemical heterogeneity on enhancements in sulfur oxidation rates are likely to be strong when (1) hydrogen peroxide concentrations are low, for example the radiation fog in California's San Joaquin Valley, where the calculated enhancement factors range from 1.10 to 1.65, or (2) the droplet pH is high enough to support rapid S(IV) oxidation by ozone and metal-catalyzed S(IV) autooxidation, for example in relatively pristine environments like Angora Pk., Oregon, where the calculated enhancement factors range from 1.02 to 2.0. We expect real clouds to contain more than two chemically distinct drop populations. A wide distribution of drop compositions can support even faster sulfur oxidation rates.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.