Functionally Graded Fiber-Reinforced Cementitious Composites---Manufacturing and Extraction of Cohesive Fracture Properties Using Finite Elements and Digital Image Correlation
Shen, Bin
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/83398
Description
Title
Functionally Graded Fiber-Reinforced Cementitious Composites---Manufacturing and Extraction of Cohesive Fracture Properties Using Finite Elements and Digital Image Correlation
Author(s)
Shen, Bin
Issue Date
2009
Doctoral Committee Chair(s)
Paulino, Glaucio H.
Department of Study
Civil Engineering
Discipline
Civil Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Civil
Language
eng
Abstract
A novel four-layer functionally graded fiber-reinforced cementitious composite (FGFRCC) as a beam component has been fabricated using extrusion and pressing techniques. The FGFRCC features a linear gradation of fiber volume fraction through the beam depth. The bending test shows the enhanced bending strength of the FGFRCC without delamination at layer interface. Microstructure investigation verifies the fiber gradation and the smooth transition between homogeneous layers. The remaining part of the study is the development of a hybrid technique for the extraction of mode I cohesive zone model (CZM). First, a full-field digital image correlation (DIC) technique has been adopted to compute the two-dimensional displacement fields. Such displacement fields are used as the input to the finite element (FE) formulation of an inverse problem for computing the CZM. The CZM is parameterized using flexible splines without assumption of the model shape. The Nelder-Mead optimization method is used to solve the ill-posed nonlinear inverse problem. Barrier and regularization terms are incorporated in the objective function for the inverse problem to assist optimization. Numerical tests show the robustness of the technique and the tolerance to experimental noise. The techniques are then applied to plastics and homogeneous FRCCs to demonstrate its broader application.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.