This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/83394
Description
Title
Seismic Performance of Anchored Brick Veneer
Author(s)
Reneckis, Dziugas Joseph
Issue Date
2009
Doctoral Committee Chair(s)
LaFave, James M.
Department of Study
Civil Engineering
Discipline
Civil Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Civil
Language
eng
Abstract
A study was conducted on the out-of-plane seismic performance of anchored brick veneer with woodframe backup wall systems, to evaluate prescriptive design requirements and current construction practices. Prescriptive requirements for the design and construction of anchored brick veneer are currently provided by the Masonry Standards Joint Committee (MSJC) Building Code, the International Residential Code (IRC) for One- and Two-Family Dwellings, and the Brick Industry Association (BIA) Technical Notes. Laboratory tests were conducted on brick-tie-wood subassemblies, comprising two bricks with a corrugated sheet metal tie either nail- or screw-attached to a wood stud, permitting an evaluation of the stiffness, strength, and failure modes for a local portion of a veneer wall system, rather than just of a single tie by itself. Then, full-scale brick veneer wall specimens (two one-story solid walls, as well as a one-and-a-half story wall with a window opening and a gable region) were tested under static and dynamic out-of-plane loading on a shake table. The shake table tests captured the performance of brick veneer wall systems, including interaction and load-sharing between the brick veneer, corrugated sheet metal ties, and wood-frame backup. Finally, all of these test results were used to develop finite element models of brick veneer wall systems, including nonlinear inelastic properties for the tie connections. The experimental and analytical studies showed that the out-of-plane seismic performance of residential anchored brick veneer walls is generally governed by: tensile stiffness and strength properties of the tie connections, as controlled by tie installation details; overall grid spacing of the tie connections, especially for tie installation along the edges and in the upper regions of walls; and, overall wall geometric variations. Damage limit states for single-story residential brick veneer wall systems were established from the experimental and analytical studies as a function of tensile failure of key tie connections, and the seismic fragility of this form of construction was then evaluated. Based on the overall findings, it is recommended that codes incorporate specific requirements for tie connection installation along all brick veneer wall edges, as well as for tie connection installation at reduced spacings in the upper regions of wall panels and near stiffer regions of the backup. Residential anchored brick veneer construction should as a minimum be built in accordance with the current prescriptive code requirements and recommendations, throughout low to moderate seismicity regions of the central and eastern U.S., whereas non-compliant methods of construction commonly substituted in practice are generally not acceptable.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.