Modeling of Hysteretic Behavior of Beam -Column Connections Based on Self -Learning Simulation
Yun, Gun Jin
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/83318
Description
Title
Modeling of Hysteretic Behavior of Beam -Column Connections Based on Self -Learning Simulation
Author(s)
Yun, Gun Jin
Issue Date
2006
Doctoral Committee Chair(s)
Ghaboussi, Jamshid
Elnashai, Amr S.
Department of Study
Civil Engineering
Discipline
Civil Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Mechanical
Language
eng
Abstract
In this research, a new neural network (NN) based cyclic material model is applied to inelastic hysteretic behavior of connections. In the proposed model, two energy-based internal variables are introduced to expedite the learning of hysteretic behavior of materials or structural components. The model has significant advantages over conventional models in that it can handle complex behavior due to local buckling and tearing of connecting elements. Moreover, its numerical implementation is more efficient than the conventional models since it does not need an interaction equation and a plastic potential. A new approach based on a self-learning simulation algorithm is used to characterize the hysteretic behavior of the connections from structural tests. The proposed approach is verified by applying it to both synthetic and experimental examples. For its practical application in semi-rigid connections, design variables are included as inputs to the model through a physical principle based module. The extended model also gives reasonable predictions under earthquake loads even when it is presented with new geometrical properties and loading scenario as well.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.