Thermal Transport on the Nanometer Scale and the Effect of Microstructure and Interface Resistance
Costescu, Ruxandra M.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82778
Description
Title
Thermal Transport on the Nanometer Scale and the Effect of Microstructure and Interface Resistance
Author(s)
Costescu, Ruxandra M.
Issue Date
2006
Doctoral Committee Chair(s)
David Cahill
Department of Study
Materials Science and Engineering
Discipline
Materials Science and Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
The aim of this research is to provide a better understanding of the physics of phonons involved in thermal transport on nanometer scale and to address the need for systematic information about the thermal properties of ultra-thin films. The present work includes data on thermal transport in dense and porous hydrogen silsesquioxane thin films and thin SiO2 films, across TiN/MgO(001), TiN/MgO(111) and TiN/Al2O3(0001), and in W/Al2O3, Re/Al2O3 and W/B multilayers. The thermal conductivities of low-k dielectric thin films were measured with the 3o method between 80 and 400 K. The strong temperature dependence is not reflected by the minimum thermal conductivity model for homogeneous materials. The differential effective medium model predicts a 1.5 power scaling of thermal conductivity with atomic density, in good agreement with experimental data. The thermal conductances G of TiN/MgO(001), TiN/MgO(111) and TiN/Al2O3(0001), interfaces, measured at temperatures between 79.4 and 294 K using time-domain thermoreflectance, are essentially identical and in good agreement with the predictions of lattice dynamics models and the diffuse mismatch model. Near room temperature G ≈ 700 MW m-2 K-1, ≈5 times larger than the highest values reported previously for any individual interface. For W/Al2O3, multilayers deposited by atomic layer deposition with layers only a few nanometers thick, the high interface density produced a strong impediment to heat transfer, giving a thermal conductivity of ∼0.6 W m-1 K-1. The thermal conductivities of magnetron sputtered multilayers of W/Al2O3, Re/Al 2O3 and W/B decrease with increasing number of layers and the dependence on temperature is similar to that predicted by the diffuse mismatch model. The conductivities of W/Al2O3, and Re/Al 2O3 multilayers were found to be similar, and as low as ∼0.6 W m-1 K-1---suitable for ultra-low conductivity thermal barriers.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.