Structure, Thermodynamics, Mechanical Properties and Glassy Dynamics in Anisotropic Polymeric Materials
Oyerokun, Folusho Taiwo
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82772
Description
Title
Structure, Thermodynamics, Mechanical Properties and Glassy Dynamics in Anisotropic Polymeric Materials
Author(s)
Oyerokun, Folusho Taiwo
Issue Date
2005
Doctoral Committee Chair(s)
Kenneth Schweizer
Department of Study
Materials Science and Engineering
Discipline
Materials Science and Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
A dynamical theory has been developed for the onset or crossover temperature (Tc) to highly non-Arrenhius activated relaxation regime in deeply supercooled polymer liquids. Alignment and/or deformation modify thermodynamic and structural properties thereby inducing anisotropic segmental dynamics. Either suppression or elevation of ( Tc) is predicted depending on the nature of anisotropy. Results have been obtained for liquid crystalline polymers, thin films, rubber networks and grafted polymer brushes. The underlying mechanism for ( Tc) shifts is this theory is anisotropy of the degree of coil interpenetration.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.