Domain Switching and Microcracking in Ferroelectric Single Crystals and Polycrystalline Ceramics
Tan, Xiaoli
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82733
Description
Title
Domain Switching and Microcracking in Ferroelectric Single Crystals and Polycrystalline Ceramics
Author(s)
Tan, Xiaoli
Issue Date
2002
Doctoral Committee Chair(s)
Zhong, Sheng
Department of Study
Materials Science and Engineering
Discipline
Materials Science and Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
In polycrystalline piezoelectric ceramics, electric field-induced cracking occurred by intergranular fracture. The macroscopic path of the crack growth depended strongly upon the applied field and the poling direction. Analysis showed that cracks extended along the place of maximum normal strain. Mechanisms for the intergranular fracture were investigated by the in-situ TEM technique. During electrical cycling, transient dielectric breakdown and local melting in the amorphous grain boundary layers were the likely precursors to fracture. Assisted by the incompatible stresses, cavitation took place. The increase of the density and the linkage of these cavities weakened the grain boundary, leading to crack growth along the boundary.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.