Directed Colloidal Assembly and Characterization of PZT -Polymer Composites
Smay, James Earl
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82717
Description
Title
Directed Colloidal Assembly and Characterization of PZT -Polymer Composites
Author(s)
Smay, James Earl
Issue Date
2002
Doctoral Committee Chair(s)
Lewis, Jennifer A.
Department of Study
Materials Science and Engineering
Discipline
Materials Science and Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
Concentrated (&phis;PZT = 0.47) PZT-5H gels were developed as inks for the robotic deposition of 3-D, mesoscale periodic structures with self-supporting features such as lattices of rod-like elements and v-shaped test structures. The gels exhibited pH dependent viscoelastic properties and Hershel-Bulkley flow behavior. The deflection of as-deposited spanning elements was measured using laser profilometry. Flow modeling and shape evolution data indicated a core-shell architecture as the ink exited the deposition nozzle, which simultaneously provided strength to form spanning elements and good bonding between layers. The core grew rapidly (∼1s) due to the quick recovery of gel structure in these inks. 3-X type PZT-polymer composites consisting of PZT lattices in a polymer matrix (3-3), a lattice/polymer matrix with PZT faceplates (3-2), or a lattice/polymer matrix with faceplates and encircled by a solid PZT ring (3-1) were formed and their piezoelectric properties were characterized. The PZT:polymer ratio was controlled by the lattice spacing in these thin composites (∼1 mm). Lattice rod intersections formed high permittivity, low compliance PZT pillars that concentrated stress and electric flux, leading to improved hydrostatic figures of merit.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.