Applications of Traction Force Microscopy in Measuring Adhesion Molecule Dependent Cell Contractility
Mann, Cynthia Marie
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82432
Description
Title
Applications of Traction Force Microscopy in Measuring Adhesion Molecule Dependent Cell Contractility
Author(s)
Mann, Cynthia Marie
Issue Date
2009
Doctoral Committee Chair(s)
Leckband, D.E.
Department of Study
Chemical Engineering
Discipline
Chemical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study uses the C2C12 cell line to demonstrate that integrin-mediated adhesion to soft substrates causes different cell behavior than N-cahderin-mediated adhesion to soft substrates. Cells plated on laminin-coated hydrogels exhibited stiffness dependent increases in cell spreading, whereas cells plated on N-cadherin-coated substrates. Similarly, cells plated on laminin-coated substrates exhibited substrate stiffness dependent increases in normalized net contractile moment, however the same cells plated on N-cadherin-coated substrates were unable to deform any but the softest hydrogels.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.