Metering and Routing of Liquid Quanta in Microfluidic Devices
Cole, Matthew Charles
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82417
Description
Title
Metering and Routing of Liquid Quanta in Microfluidic Devices
Author(s)
Cole, Matthew Charles
Issue Date
2008
Doctoral Committee Chair(s)
Kenis, Paul J.A.
Department of Study
Chemical Engineering
Discipline
Chemical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Language
eng
Abstract
This thesis describes the development of a number of microfluidic handling techniques, including; (i) the detection of individual liquid droplets using electrical position sensors; (ii) the generation and control over the three major microfluidic segmented laminar flow regimes; (iii) the creation of discrete liquid quanta by entirely chip-driven techniques, including on-chip valves and pumps; (iv) the driving around of those resulting liquid quanta; and (v) the combining of multiple microfluidic peristaltic pumps into a multiplexed arrangement, allowing for many pumps to be controlled by a limited number of external pneumatic connections. These techniques were integrated to create an overall microfluidic droplet routing platform, capable of generating and directing individual liquid elements to arbitrary locations within a large microfluidic A I array, using completely chip-driven actuations. As a testbed application, the microfluidic capabilities developed here were utilized in conjunction with an electrohydrodynamic-jet printing process to generate a high resolution heterogeneous printhead.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.