Simulation of Transients and Transport in Plasma Processing Reactors
Subramonium, Pramod
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/82360
Description
Title
Simulation of Transients and Transport in Plasma Processing Reactors
Author(s)
Subramonium, Pramod
Issue Date
2003
Doctoral Committee Chair(s)
Kushner, Mark J.
Department of Study
Chemical and Biomolecular Engineering
Discipline
Chemical and Biomolecular Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Language
eng
Abstract
In this thesis, two-dimensional (2D) and 3D hybrid models were developed to investigate transient phenomena (time variation of plasma properties) during pulsed operation of ICP reactors. Employing the 2D model, it was demonstrated that utilizing transients during pulsed operation, energetic negative ions can be extracted from pulsed ICPs that can aid in reducing charge buildup on wafers. Energetic negative ions can be extracted from Ar/Cl2 pulsed ICPs with pulsed low frequency (1--2 MHz) substrate biases. Employing the 3D model, the impact of asymmetric pumping on plasma properties during continuous wave (CW) ICP operation and the effect of transients on these flow-induced asymmetries were quantified. Asymmetric pumping results in non-uniform species densities, which then feed back through plasma conductivity making the power deposition azimuthally asymmetric. The asymmetries in plasma properties increase with increase in power and gas flow rate. Pulsed operation of ICPs improves the uniformity of plasma properties as it reduces the positive feedback between species density and power deposition. In Ar ICPs, the plasma parameters were more uniform relative to CW operation on decreasing duty cycle or pulse repetition frequency (PRF).
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.