Global Search Methods for Solving Nonlinear Optimization Problems
Shang, Yi
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81906
Description
Title
Global Search Methods for Solving Nonlinear Optimization Problems
Author(s)
Shang, Yi
Issue Date
1997
Doctoral Committee Chair(s)
Wah, Benjamin W.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
We show experimental results in applying Novel to solve nonlinear optimisation problems, including (a) the learning of feedforward neural networks, (b) the design of quadrature-mirror-filter digital filter banks, (c) the satisfiability problem, (d) the maximum satisfiability problem, and (e) the design of multiplierless quadrature-mirror-filter digital filter banks. Our method achieves better solutions than existing methods, or achieves solutions of the same quality but at a lower cost.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.