Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
Ham, MyungJoo
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81870
Description
Title
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
Author(s)
Ham, MyungJoo
Issue Date
2009
Doctoral Committee Chair(s)
Agha, Gul A.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Robotics
Language
eng
Abstract
We conduct both physical robot experiments and software agent simulations for the coordinated task allocation mechanisms. The experimental results suggest that the proposed mechanisms are scalable and fault-tolerant and work in physical robot systems. We compare the proposed methods to control methods with various performance metrics and the results suggest that the performance can be enhanced by the proposed approaches. We observe and analyze issues such as deadlock, pingpong-bidding, pingpong-swapping, and others. We analyze the auditing mechanism with mathematical analysis and software simulations on the behavior of the mechanism. The results from both analysis and simulations suggest that the auditing mechanism can detect cheating attempts with high probability without excessive communication overheads in various conditions. We also suggest an adaptive mechanism to be included in the auditing mechanism so that each robot or peer can tune the communication overheads and detection probability according to the dynamic environments. The analysis and simulations of the evolutionary game theory on the behaviors of peers or robots suggest that the auditing mechanism can discourage free-riding and cheating attempts effectively without harming the popularity of systems with auditing mechanisms. The analysis shows that a strategy where nodes behave honestly and contribute properly is evolutionarily stable and the simulations show that such a strategy takes the dominance even if the strategy had minor initial population.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.