Hypergraph-Based Combinatorial Optimization of Matrix -Vector Multiplication
Wolf, Michael Maclean
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81868
Description
Title
Hypergraph-Based Combinatorial Optimization of Matrix -Vector Multiplication
Author(s)
Wolf, Michael Maclean
Issue Date
2009
Doctoral Committee Chair(s)
Michael Heath
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
The second problem we address is parallel matrix-vector multiplication for large sparse matrices. Parallel sparse matrix-vector multiplication is a particularly important numerical kernel in computational science. We have focused on optimizing the parallel performance of this operation by reducing the communication volume through smarter, two-dimensional matrix partitioning. We have developed and implemented a recursive algorithm based on nested dissection to partition structurally symmetric matrices. In general, this method has proven to be the best available for partitioning structurally symmetric matrices (when considering both volume and partitioning time) and has shown great promise for information retrieval matrices. We also developed a second, simpler method that is fast and works well for many symmetric matrices.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.