Minimalist Models and Methods for Visibility-Based Tasks
Tovar, Benjamin
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81867
Description
Title
Minimalist Models and Methods for Visibility-Based Tasks
Author(s)
Tovar, Benjamin
Issue Date
2009
Doctoral Committee Chair(s)
LaValle, Steven M.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Robotics
Language
eng
Abstract
This dissertation proposes minimal models for solving visibility-based robotic tasks. It introduces strategies that handle sensing and actuation uncertainty while avoiding precise state estimations. This is done by analyzing the space of sensing and actuation histories, the history information space. The history information space is compressed into smaller spaces, called derived information spaces, which are used for filtering and planning. By designing and analyzing the derived information spaces, we determine minimal information requirements to solve the robotic tasks. In this context, minimal information refers to the detection combinatorial properties of the environment necessary to complete the task. Examples of these combinatorial properties are the order type of a configuration of landmarks, or the inflection arrangement of a polygonal boundary. By establishing that certain tasks can be solved using simple sensors that detect these properties, formal performance guarantees are made while avoiding substantial modeling challenges. From this perspective, the thesis provides novel strategies for classical robotic tasks, such as navigation in unknown planar environments, navigation among unknown sets of landmarks, and visibility-based pursuit-evasion. Information is recovered from combinatorial events with models of sensors unable to gather metric information (e.g., distances or angles), or global reference frames (e.g., without a compass, or a global positioning system). These combinatorial events served as the base of a sensor beam abstraction, from which several inferences about the path followed by the robot are made.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.