A Generic Mesh Data Structure With Parallel Applications
Cochran, William Kenneth, Jr
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81858
Description
Title
A Generic Mesh Data Structure With Parallel Applications
Author(s)
Cochran, William Kenneth, Jr
Issue Date
2009
Doctoral Committee Chair(s)
Michael Heath
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
High performance, massively-parallel multi-physics simulations are built on efficient mesh data structures. Most data structures are designed from the bottom up, focusing on the implementation of linear algebra routines. In this thesis, we explore a top-down approach to design, evaluating the various needs of many aspects of simulation, not just the implementation of a matrix-vector product. With this as motivation, we have developed a generic data structure that both provides efficient linear algebra subroutines by optimizing the computation at a fine-grained level and allows for rapid, reusable implementations of complex geometric algorithms. We demonstrate both through various experiments including directly measuring the efficiency of matrix-vector multiplication; implementation and analysis of a multi-frontal indefinite direct solver; approximation of the medial axis; and the development of a hybrid, two-phase mesh partitioner. The efficiency of matrix-vector multiplication is compared against a theoretical value derived from a simple model of computing hardware. The direct solver uses our data structure to remove a search step normally required for pivoting in indefinite solvers. We demonstrate pairwise pivoting may have advantages over partial pivoting for ill-conditioned sparse matrices arising from meshes. We also present a novel, parallel algorithm that consistently approximates the medial axis of a domain of arbitrary dimension. By leveraging our data structure, a single implementation can be used for any type of mesh (e.g., 2-D, 3-D, space-time, and mixed element). Finally, we develop a hybrid approach to mesh partitioning in parallel. Using the medial axis of the mesh, large features are separated and partitioned independently using a geometric partitioner. In this way, complex domains are broken down into pieces that are better suited for geometric partitioning.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.