Tradeoffs in Designing Massively Parallel Accelerator Architectures
Mahesri, Aqeel A.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81853
Description
Title
Tradeoffs in Designing Massively Parallel Accelerator Architectures
Author(s)
Mahesri, Aqeel A.
Issue Date
2009
Doctoral Committee Chair(s)
Patel, Sanjay J.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
We propose a methodology for performing an integrated optimization of both the micro-architecture and the physical circuit design of the cores and caches. In our approach, we use statistical sampling of the design space for evaluating the performance of the micro-architecture and RTL synthesis to characterize the area-power-delay of the underlying circuits. This integrated methodology enables a much more powerful analysis of the performance-area and performance-power tradeoffs for the low level micro-architecture. We use this methodology to find the optimal design points for an accelerator architecture under area constraints and power constraints. Our results indicate that more complex architectures scale well in terms of performance per area, but that the addition of a power constraint favors simpler architectures.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.