This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81824
Description
Title
Computing Interesting Topological Features
Author(s)
Chambers, Erin Wolf
Issue Date
2008
Doctoral Committee Chair(s)
Jeff Erickson
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Finally, we examine a more fundamental homotopy problem in a different setting. A Rips complex is a simplicial complex defined by a set of points from some metric space where every pair of points within distance 1 is connected by an edge, and every (k + 1)-clique in that graph forms a k-simplex. We prove that the projection map which takes each k-simplex in the Rips complex to the convex hull of the original points in the plane induces an isomorphism between the fundamental groups of both spaces. Since the union of these convex hulls is a polygonal region in the plane, possibly with holes, our result implies that the fundamental group of a planar Rips complex is a free group, allowing us to design efficient algorithms to answer homotopy questions in planar Rips complexes.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.