Algebraic Multigrid for Discrete Differential Forms
Bell, William N.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81820
Description
Title
Algebraic Multigrid for Discrete Differential Forms
Author(s)
Bell, William N.
Issue Date
2008
Doctoral Committee Chair(s)
Olson, Luke N.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Discrete differential forms arise in scientific disciplines ranging from computational electromagnetics to computer graphics. Examples include stable discretizations of the eddy-current problem, topological methods for sensor network coverage, visualization of complex flows, surface parameterization, and the design of vector fields on meshes. In this thesis we describe efficient and scalable numerical solvers for discrete k-form problems. Our approach is based on the principles of algebraic multigrid (AMG) which is designed to solve large-scale linear systems with optimal, or near-optimal efficiency. Since the k-form problems to be solved are arbitrarily large, the need for scalable numerical solvers is clear.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.